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ABSTRACT 

Let X be a polyhedral Banach space whose dual is an Ll(/t) space for some 
measure/a. Then for each Banach spaces Y ~ Z and each compact operator 
T: Y--~ X there exists a norm preserving compact extension T: Z---~ X. 

The existence of norm preserving compact extensions for all the compact 

operators into a Banach space X implies that X* is an L space in the sense of  

Kakutani [3] and X is polyhedral (cf. [11, theorem 7.10] where a stronger result 

is proved). Lindenstrauss raised the problem whether, conversely, a polyhedral 

Banach space whose dual is an L space has the " i n t o "  extension property for  

compact operators with no change of the norm [11, p. 102]. In the present paper 

we solve affirmatively this problem. In doing this, we are helped by a geometric 

characterization of the discussed spaces: there are no infinite dimensional w*- 

closed proper faces in the closed unit balls of  their duals. In [11, p. 103] a class 

of polyhedral Banach spaces which have the previously mentioned extension 

property was constructed. We show by an example that there are polyhedral 

Banach spaces whose duals are L-spaces and which do not belong to the class 

described in [11]. Section 2 contains a generalization of a linear extension theorem 

given in [10] which may be helpful outside the content of this paper. 

1. We consider only Banach spaces over the real field. A Banach space is called 

polyhedral if the unit balls of all its finite dimensional subspaces are polytopes 

(cf. [7, p. 265]). The simplest example of such a space is Co, the space of all real 

sequences converging to zero [7, p. 266]. A Banach space X is called a G space 

[11, p. 79] if X is isometric to a subspace of a C(K) space, K compact Hausdorff 

consisting of all the functions satisfying a set f~ of  relations of the form 
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= k~ ,k~ e K ,  2~ a scalar, a E f t .  

Any closed linear sublattice of C(K) is a G space [4]. 

I f  X is a Banach space S x denotes its closed unit ball. Let K be a compact 

convex subset of a linear topological space. By ext K we denote the set of extreme 

points of K .  If K is symmetric about the origin we denote by Ao(K) the Banach 

space of  all continuous affine symmetric ( f ( - k )  = - f ( k ) )  real functions on K 

with the supremum norm. Any Banach space X can be identified with Ao(Sx,  ) ,  

X* being considered with its W*-topology. 

The convex hull of  a set A is denoted by co (,4). A convex subset of  a convex 

set K is called a face of K if 2k 1 + ( 1 - ) , ) k  2 ~ F  with ki, k 2 s K and 2 ~ (0,1) 

imply kl ,  k 2 ~ F .  I f  X is an L space and F is a face of S x then the convex hull 

of F and - F  is called a facial section of Sx.  

A map 0 from a convex subset K of a linear topological space to the collection 

of all the non-void convex subsets of a linear topological space E is called con- 

vex if  

20(ki) + (1 - 2)0(k2) -- 0(21q + (1 - ;t)k2) 

for all kl, k2 e K and 2 e (0, 1). It is lower semicontinuous if {k ~ K:  O(k) n U ¢ ~} 

is open in the relative topology of K for each open subset U of E .  

2. PROPOSITION 1. Let X be a Banach space whose dual is an L space, H a 

w*-closed facial  section of Sx ,  and Y a separable subspace of Ao(H). There 

exists a linear isometry T : Y ~  X such that x*(T(y)) = y(x*) for  each x* ~ H ,  

y ~ Y .  

Proof. The idea of the proof  is that of [1, theorem 5.2]. Let {y ,}~  1 be 

dense in Y. The subspace of  Y generated by {Y,},~l induces a metrizable 

topology in Y* which coincides with the w*-topology on the w*-compact set 

S t , .  Hence Y* with this metrizable topology can be embedded into a Frechet 

space Z such that on S t ,  the w*-topology and the topology of Z are the same. 

Define the map U : H  ~ St ,  by U(x*)(y)  = y(x*) ,  x * ~  H ,  y e Y. By [10, theo- 

rem 2.2,] U admits a w*-continuous affine symmetric extension U ' : S x ,  ~ S t , .  

It is obvious that the map T: Y ~ Ao(Sx,) = X given by r (y ) ( x* )  = U'(x*)(y) ,  

x* e Sx ,  , y E Y has the needed properties. 

REMARK. For  C(K) spaces, K compact Hausdorff, the above result was proved 

by Arens [1, theorem 5.2]. 
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The next lemma is due essentially to Kalman I-5]. Our statement is slightly 

stronger than that of [5] but has almost the same proof so we omit it. 

n LEMMA 2. Let K be a polytope in a f inite dimensional space, { i}i=t its vertices 

and x o ~ K with x o ~ ~= i i 12oV i ~ "  12o 1 20 > 0  Then there are real 

continuous functions on K ,  {2i}7=1, such that x = ~ 7=12i(x)v~, E 7=12i(x) = 1, 

2~(x) > 0 for  each x E K and 2i(Xo) = 2io . 

3. We can now prove the main result of this paper: 

THEOREM 3. Let X be a Banach space whose dual is an L space. The fol-  

lowing statements are equivalent. 

(1) X is polyhedral. 

(2) No subspace of X is isometric to c; 

(3) Sx ,  has no infinite dimensional w*-closed proper faces; 

(4) For every Banach spaces Y c Z and every compact operator T: Y ~ X 

there exists a compact extension T: Z ~  X with I[ :vii-- [I z l l ,  

(5) For every Banach spaces Y c Z and every operator T: Y ~ X  with 

dim T(Y)  < 2 there is a compact extension T:  Z ~ X such that II 11 = II z [ I  

Proof. The implication ( 1 ) ~  (2) is obvious since c is not polyhedral. 

(2) ~ (3). Assume that F is an infinite dimensional w*-closed proper face of 

Sx , .  Then F is an infinite dimensional w*-compact simplex, H = co(F w - F )  

is a w*-closed facial section of Sx,  and Ao(H) is isometrically isomorphic to the 

space of all continuous affine functions on F (normed by the supremum of the 

absolute value). It follows from [14] and l-ll, p. 67, corollary 2] that Ao(H ) 

contains an isometric copy of c. Proposition 1 implies then that X contains a 

subspace isometrically isomorphic to c. 

(3) ~ (4). Assume (3) and let Y,Z and Tbe as in (4). We may suppose !1 Z[! -- 1. 

Then the restriction of T* to Sx,  maps Sx,  into S t ,  and it is continuous when 

the first ball is considered with the w*-topology and the second with the norm 

topology. We shall construct a continuous affine symmetric map Z from Sx ,  

(with the w*-topology) into Sz, (with the norm topology) such that if q~: Z* -~ Y* 

is the restriction map then qS(X(x*)) = T*(x*) for each x * ~  Sx , .  Once this is 

done we are through since the operator T ' Z  ~ X defined by T(z)(x*) = Z(x*)(z) 

is an extension of T with II II = 1 and its compactness follows from the fact 

that the restriction of T* to Sx ,  is Z. 

The map Z will be a selection of a certain set valued map from Sx ,  into Sz, 
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but before we define it we are going to prove the following: there is a number 

ct~(0,1) such that only finitely many extreme points of K = T*(Sx. )  are of 

norm greater than ~. Assume that this claim is not true. Then there is a converging 

{Y, }, = 1 in ext K with y* --/: y,* if n # m whose limit y* is of norm one. sequence * ~ 

The intersection of K with a maximal convex subset of {y* ~ Y*: 1[ Y* ]l = 1} is 

a closed face of K .  The w*-closed face T * -  I(F) n Sx,  of Sx,  is finite dimensional 

by (3). Let x*, x*, ...,Xp be its extreme points. Let x*+, be an extreme point of 
, 

Sx ,  such that T*(x*+,) = y*,  n = 1 ,2 , . . . .  We may suppose that x i * #  +_ x~ 
f X * ~  oo i # j .  Now t i ji=p+x t - ) (T*- l (F)  (3 Sx,  ) is a w*-closed bounded subset of X* 

so by the Milman theorem the extreme points of the w*-closure of co({x*}~°= 1)are 

{x*}~=l. It follows from [13, proposition 1.2] that the w*-closed convex hull of 

{x *~° F '  ,-. oo x* ~ a = = ~s~=l is = { z;,i=lai i :  ~ i = I  ~ 1 ,  as > 0}. Since X* is an Lspace  it 

is easy to see that F '  is a (proper) face of Sx . .  Since F '  is infinite dimensional 

we got a contradiction. 

Let __+ u*, __+*,..., + u *  be all the extreme points of K having norm one 

• if i # j ) .  The set K n {y* e Y*: [1 y* [[ = 1} is finite as a consequence (u* ~ u~ 

of the above claim. Another consequence of this claim is the existence of a number 

/~ ~ (0, 1) such that y*~  ext K and {I Y* {1 >/~ imply y* = + u* for a certain i 

and a suitable sign. Denote Kp = K c~ {y* ~ Y*: [] y* [] < fl}. By the Krein- 

Milman theorem and [2, p. 79] we have K = co(K0 u {+ uff: 1 -< i <_ n}) and 

if  y * ~ K ,  II Y* I[ = 1 then y * ~ c o { +  u*: 1 < i < n}. Let z~ ~ S z .  be extensions 

of u* to Z.  Define a map ¢, from K to the family of subsets of Sz. in the following 

way: if y* e K ,  II Y* II < 1 then 

~(y*) = {~* e Sz, :  ¢(~*) = y*} 

(recall that ¢ is the restriction map from Z* to Y*) and if y* e K ,  I] Y* ]] = 1 then 

2e~u~, > = + 1 O(Y*) = = = 1, O, ~i - • 
i = l  i = l  i = l  

The set O(y*) is non-void closed convex and ~ ( - y * )  = - ~ ( y * )  for any y * e  K .  

For  II y* II < 1 these properties are obvious. For [] y* II = 1 they follow from the 

following observation: if the convex combinations ]~ "i = ~2~e~u~ and ~ I~e~u~' * 

(ei = _ 1, e" = _+ 1) represent y* and 2i# i ¢ 0 for some i then ei = e'i since 

there is a face of K containing y* and included in the boundary of Sy , .  The same 

observation helps us to see that O(y*) is convex. 

We are going to prove that ~ is lower semicontinuous when K and Sz, are 

considered with their norm topologies. Let U be an open subset of Z* and 
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y*c{y*~K: ~9(7")~ U ~ ~3} = M.  We have to show that y* is an interior 

point of M (with the relative topology of K).  If  ][ y *ll < 1 there us z~ ~ ~9(yo) n U 

with ]1 z~ I] < 1. Let V = U n {z* e Z*: II z* II < By the open mapping 

theorem q~(V) is open in Y* hence q~(V) n K is a neighbourhood of y ' i n  K in- 

cluded in M. Suppose now that [] y* ][ --- 1 and z* ~ ~(y*) n U so Zo = ~"i=12ioe~oZ*i 

w i t h y * =  ~E" ~i i , ~ ,,12io = 1 2~ > 0 ,  i=lZoeoUl , i= , = eo = ___ 1, 1 -< i < n.  Let B be 

an open ball of Z* included in U of center z~ and radius r > 0 .  Let 

2~(y*), #f(y*), 1 < i < n,  be non-negative continuous functions on the polytope 

co{__+ u*: 1 < i < n} given by Lemma 2 such that 

y* = ~ 2i(y*)eiou*- ~ #'(y*)eiou *, ~ 2'(y*)+ ~ #'(y*) = 1 
i = 1  i = 1  i = 1  i = 1  

for each y * ~ c o ( + u i * : l _  i <  n} and 2~(y * ) = 2 ~ ,  u~(y *)=0,  1 <_ i< n. 
Choose a neighborhood W 1 of y* which satisfies for every y* ~ W 1 n co(+  u*: 

l ~ i _ < n } :  

1=,# -  *lt < ,./3. 

An easy compactness argument shows that there exists a neighborhood Wof y~' such 

tha t i fy*~  W n  Kandy*=vy*+(1-v)y* with y*~Kp, y~'~co( _+ u*: 1 _< i < n} 

and v ~ [0, 1] then v < r/3 and y* ~ Wa. It is clear now that if z* ~ ¢(y*) the func- 
n ~ i ,  * - ~ i Z *  . i * i , tional vz* + (1 - v) [ ]~ ~=1 ~Y2J o i - ]~ ~:~# (Y2)EoZi ] belongs to ~b(y*) n B 

_~ ~(y*) O U so y~' is a relative interior point of M.  

The map ~k o T* from Sx, into the collection of non-void closed convex subsets 

of Sz, satisfies ¢(T*(x*)) = - ~ ( T * ( -  x*)) for each x* ~ Sx, and it is convex 

and lower semicontinuous when Sx, is taken with its relative w*-topology and 

in Sz, we consider the norm topology. According to [10, theorem 2.2] it admits 

a continuous affine symmetric selection Z: Sx, ~ Sz,.  Obviously the map Z 

fulfills all the needed requirements. 

The implication (4) ~ (5) is trivial. I f  X* is an L space and satisfies (5) it fol- 

lows from [11, theorem 7.9(b)] that each two dimensional subspace of X is poly- 

hedral. By [6, theorem 4.7] X is polyhedral. This concludes the proof of the 

theorem. 

REMARKS. If  a Banach space X has the property derived from (5) by changing 

the condition dim T(Y) < 2 into dim T(Y) < 3 then X* is an L space (cf. [11, 

theorem 7.10]). It is not known whether the property (5) itself implies that X* 

is an Lspace (see [11, p. 56] for a related conjecture). Assuming that X* is an L 
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space it is not hard to give a direct proof of (3) ~ (1) based on Klee' s theorem 

mentioned above. If  X* is no longer assumed to be a L-space then, in general, 
the only valid implication between the properties (1), (2) and (3) is ( 1 ) ~  (2). 

Indeed, a smooth reflexive space of dimension greater than one satisfies (2) and 

(3) but it is not polyhedral. The closed unit ball of l* = l~ has infinite dimensional 

w*-closed proper faces (e.g. the set {x = (x(n))~l~: [lx[[ = x ( 1 ) =  1}) even 

though 11 contains no copy of c. 

COROLL~a~Y 1. I f  X is a polyhedral Banach space and X* is an L space then 

X* = ll(F) for a suitable set F. 

Proof. Suppose first that X is separable. The set extSx,  is a metrizable Gn 

[13, proposition 1.3] in the w*-topology. If  it is uncountable then by [8, p. 408, 

p. 445] it contains a sequence of distinct points which w*-converges to an element 

of ext Sx,.  It is easy to see then that Sx, contains an infinite dimensional w*-closed 

proper face and this contradicts (3) of the preceding theorem. Consequently 

Sx, is countable and it follows from [13, proposition 1.2] that X* = 11. The 

general case follows now from [9, theorem 1.1]. 

The next corollary shows that the class of  polyhedral spaces described in [11, 

p. 103] consists of  all the polyhedral G spaces. 

COROLLARY 2. Let X be a G space. Then X is polyhedral if and only if X is 

isometric to a subspace X'  of a C(K) space, K compact Hausdorff, consisting 

of all the functions which satisfy a set ~ of relations 

f(k~) -- 2~f(k2~), k l , k ~ 6 K ,  2 ~ ( - o o ,  oo), c~6n 

with the following property: for each f s X ' ,  f S O ,  there is a finite set 

{ki}~=l c_ K such that 

[Ifll > sup(lf(k)l: k K, k 
Proof. Suppose that X is a polyhedral G space and let K be the w*-closure 

of extSx, .  Then by [12, theorems 2 and 2 ']  the canonical image of X in C(K) 

is a subspace consisting of  all the functions which satisfy a set of conditions 

of  the above form. Assume now that there is x ~ X ,  x ¢ 0, such that 

[! x H = sup( Ix (k ) ! :  k e g -  C). 

whenever C is a finite subset of  K.  It follows that there is an infinite sequence 

{k.}.~l of distinct points of K such that I x(k.) ] -~ 1[ x I]" Without loss of general- 

ity we may assume that x(k.) ~ IIxII, {k.}.=l c__ extSx,  and k. ¢ +_ k,. if 
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n 4 m .  The set F = { x * ~ S x , : X * ( X ) =  [Ix[]} is a proper w*-closed face of  

Sx, which must be finite dimensional by (3) of  Theorem 3. Clearly F u {k,}, = 1 

is w*-closed. As in the proof  of  Theorem 3 one may show that the w*-closed 
k oo convex hull of  F u { n}, = 1 is an infinite dimensional face of  Sx, and this is a 

contradiction. Hence for each x ~ X ,  x ~ 0, there is a finite set Cx -~ K such 

that  

][x[i > sup{lx(k) l :  k e K -  Cx}. 

The other half of  the corollary was proved in [ I  l, p. 103-104]. 

We give now an example of  a polyhedral Banach space X which is not a G space 

but X* = l l .  This example settles a problem raised in [12]. Let X be the space 

x ~o such that lim~_.~ x. = ½xl + 1X2. of  all the convergent real sequences x = { ,,}. = 1 

I t  is easy to check that the vectors 

el -- (1,0,1,½, "") ,  

e2 = (0,1,½,½,..-), 

e. = (0 ,0 ,0 , . . . , 0 ,1 ,0 , . . . ) ,  n > 3 

e n (1 in the nth place) form a basis of  X .  The subspace X.  spanned by { i}i = 1 is 
n co S isometrically isomorphic to l~o. Since X,  _~ Xn+l and ~.J ,=l  , is dense in X 

it follows from [11, p. 66, corollary 1] that X* is an L space. Actually X* = l 1 

since X is a hyperplane of c. The extreme points of  Sx, are the functionals + x* 

where x*(x) = x,.  The only w*-limit points of  these functionas are 

. t _ 1 "  (~x 1 + ½x~), both of  norm less than one so Sx, has no infinite dimensional 

w*-closed proper faces. By Theorem 3 X is a polyhedral space. However, X is 

not a G space. This results for instance from the fact that there is no element 

x e X  such that x*(x) = max(x*(ei),x*(e2),0) + min(x*(ei),x*(e2),O) for all 

x * e  ext Sx. (see [12, theorem 2]). 
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